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Abstract: The enantioselectivity of transketolase towards, a-hydroxy-aldehydes is used to prepare compounds 
bearing two asymmetric centres, precursors of natural products: 2,3-dideoxynojirimycine (fagomine), 1,4- 
dideoxy-I .4-imino_D-arabinitol, and its oxidised form. 

Polyhydroxylated piperidines and pyrolidines have attracted attention in recent years’, due to their 

antiviral2 and antitumoral activities 3, ascribed to their ability to act as glycosidase inhibitors4. Fagomine, la 

(2,3-dideoxynojirimycine) was isolated in seeds of Japanese buckweats and, in a glyco-conjugated form, in 

seeds of the legume genus Xunthocercis baill.6 This compound, in contrast with 2-deoxynojirimycine, is a poor 

glycosidase inhibitor.6 No study has been reported on its hydroxylated form, 3-dcoxy-nojirimycinelb. 1,4- 

dideoxy-1,4-imino-D-arabinitol, 2 is also a naturally-occurring product, isolated from Angylocalyx 

boutiqueanus and Aruchniodes stundishi~7, as is its oxidised form, 3, a fungal metabolite isolated from 

Necfria.8 Both are potent glycosidase inhibitors. 9 

OH 

1 2 3 

Various syntheses of 110.2tt and 312 have been published, most starting from sugars as chiral 

precursors. Chemo-enzymatic syntheses using aldolase or transketolase to generate the chirality were also 

studied, the key step being an addition reaction on an aldehyde bearing an azido or protected amino group as the 

precursor of the nitrogen atom in the cycle. 13 We present here a novel approach based on the retrosynthetic route 

presented in scheme 1. 
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Scheme 1 

Keto-aldehydes such as 4 are intermediates in various syntheses of azasugars.14 They may also he 

involved in the biosynthetic pathway of 1 and 2 since 6-deoxy-6-oxo-D-fructose is an intermediate in the 

biosynthesis of mannojirimycine.ts 

We describe here the transketolase-catalysed synthesis of 4a (n=l) and 4b (n=O) in a protected form 

(scheme 2). Transketolase, a transferase involved in sugar metabolism catalyses the irreversible transfer of a 

hydroxyacetyl group from a ketose to an aldose. When the hydroxyacetyl group cbmes from hydroxypyruvate, 

the reaction becomes irreversible and therefore very useful for synthetic purposes: various aldehydes, especially 

cL-hydroxy-aldehydes, can serve as substrates, the enzyme being in this latter case enantioselective, leading to 

ketose analogs with 3S,4R configuration.16 
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Scheme 2: Chemo-enzymatic synthesis of ketose analogs. 

Reagents and conditions: i, BuLi, THF, -78°C -> -25“C. 2 hours; ii, epoxyde, -50°C -> -3YC. 3 hours -> r.t.; iii, 

HCI-KCI buffer pH I I ethanol 70/30, 60°C 12 hours; iv, hydroxypymvate. transketolase, TRIS buffer, pH 7.5; v, 

aldehyde ((Bu0)2CHCHO), -70°C 2hours -> -5OT 1 hour -> r.t.; vi, HCI-KC1 buffer, pH I/ ethanol, 80/20, 7O“C, 

12 hours. 
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5a is easily obtained by reaction of the dithiane anion on glycidaldehyde diethylacetal followed by acid 

hydrolysis. No attempt was made to isolate 5a; the solution was neutralised and directly used for the enzymatic 

step. This reaction was carried out in 50 mL of TRIS buffer (25 r&I, pH 7) containing the aldehyde (40 mM), 

hydroxypyruvate (40 mM), MgCl2 (14 mM), thiamine pyrophosphate (2 mM) and spinach transketolase (100 

units). 17 The reaction was monitored by enzymatic titration of hydroxypyruvate 18. When its concentration was 

stable, 150 mL of ethanol was added to precipitate proteins, the solution was concentrated under vacuum, and 

the residue purified by chromatography leading to 4a with a 12% yield. The structure of 4a was unequivocally 

assigned by 1H and 13C NMR.19 

Aldehyde 5b was synthesised by addition of dithiane anion on the monoacetal of glyoxal2o followed by 

acid hydrolysis. Once again, the aldehyde was not isolated; the solution was used as above for the enzymatic 

reaction. 4b was isolated with a 10% yield and character&d by 1 H and 13C NMR spectroscopy21 _ 

4a and 4b were obtained with modest yields, but the synthesis was not optimised and further work is in 

progress to improve these syntheses. Nevertheless, the method is attractive: precursors Sa and 5b are easily 

prepared from inexpensive racemic material in an optical pure form since transketolase is enantioselective 

towards a-hydroxy-aldehydes, and leads to compounds bearing two asymmetric centres. Deprotection of 4a 

and 4b, followed by reductive amination by published procedures 14 to give 1.2 and 3 is under investigation. 

This approach will provide a new route to polyhydroxylated chiral pyrolidines and piperidines. 
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